

Sorgenti di neutrini naturali

A livello nucleare i decadimenti β sono trasformazione di protoni in neutroni e viceversa: β^{-} β^{+}

Nel 1930 Pauli ipotizzò l'esistenza del neutrino e nel 1934 Fermi formulò la teoria del decadimento β

Devono valere le leggi di conservazione: dell'energia, dell'impulso, del numero barionico, del numero leptonico.

Piero Galeotti, University of Torino

 $n \rightarrow p + e^- + \overline{v_e}$

 $p \rightarrow n + e^+ + v$

Particelle fondamentali

Piero Galeotti, University of Torino

Le interazioni fondamentali

attive su tutte le distanze (*long range*)

attive su d < 10⁻¹³ cm (*short range*)

Leptoni $(e,v) \rightarrow$ sensibili a forza nucleare debole Adroni $(p,n) \rightarrow$ sensibili a forza nucleare forte e debole Piero Galeotti, University of Torino

University of Torino

9

Dalla misura di precisione della massa della Z si è avuta conferma che le famiglie di quark sono 3

 $\Gamma_{totale} = \Gamma(Z_0 \rightarrow adroni) + 3\Gamma(Z_0 \rightarrow leptoni) + N_{\nu}\Gamma(Z_0 \rightarrow neutrini)$

Piero Galeotti, University of Torino

The idea of neutrinos being massive was first suggested by Pontecorvo. The prediction came from a proposal of *neutrino oscillations*.

Neutrinos are created or annihilated as W.I. eigenstates

 $|v_e\rangle$, $|v_{\mu}\rangle$, $|v_{\tau}\rangle$ = Weak Interactions eigenstates $|v_1\rangle$, $|v_2\rangle$, $|v_3\rangle$ = Mass (Hamiltonian) eigenstates

Neutrinos propagate as a superposition of mass eigenstates

Per semplicità, consideriamo per ora due famiglie di neutrini

$$\begin{pmatrix} \boldsymbol{v}_{\mu} \\ \boldsymbol{v}_{e} \end{pmatrix} = \begin{pmatrix} \cos\theta & \sin\theta \\ -\sin\theta & \cos\theta \end{pmatrix} \begin{pmatrix} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \end{pmatrix}$$

Il segnale osservabile varia periodicamente con la distanza del rivelatore dalla sorgente, ripetendosi per multipli interi della lunghezza di oscillazione, che si ottiene ponendo la fase $\Phi = 2\pi$

$$L_{osc} = 2\pi \frac{2p_v}{|m_1^2 - m_2^2|} \approx 2\pi \frac{2E_v}{|m_1^2 - m_2^2|} = 2,48 \text{km} \frac{E_v(\text{GeV})}{\Delta m^2(\text{eV}^2)}$$

La probabilità di oscillazione è data da

$$P_{\nu_{\mu} \to \nu_{e}} = \sin^{2} 2\vartheta \cdot \sin^{2} \left(1,27 \frac{\Delta m^{2} L}{E_{\nu}} \right)$$

e si hanno massimi di oscillazione per

Piero Galeotti, University of Torino

$$1.27 \frac{\Delta m^2 L}{E_v} = (2n+1) \frac{\pi}{2}$$

Appearance vs. Disappearance

Piero Galeotti, University of Torino

Piero Galeotti, University of Torino

In uno schema a 3 neutrini gli *autostati deboli* (o *di flavor*) *fenomenologici*, ossia v_e , v_{μ} , v_{τ} sono legati agli *autostati di massa* v_i aventi una massa definita m_i , da una relazione lineare del tipo:

$$\begin{pmatrix} \boldsymbol{v}_{e} \\ \boldsymbol{v}_{\mu} \\ \boldsymbol{v}_{\tau} \end{pmatrix} = \mathbf{U} \cdot \begin{pmatrix} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \boldsymbol{v}_{3} \end{pmatrix} = \begin{pmatrix} \boldsymbol{U}_{e1} & \boldsymbol{U}_{e2} & \boldsymbol{U}_{e3} \\ \boldsymbol{U}_{\mu 1} & \boldsymbol{U}_{\mu 2} & \boldsymbol{U}_{\mu 3} \\ \boldsymbol{U}_{\tau 1} & \boldsymbol{U}_{\tau 2} & \boldsymbol{U}_{\tau 3} \end{pmatrix} \cdot \begin{pmatrix} \boldsymbol{v}_{1} \\ \boldsymbol{v}_{2} \\ \boldsymbol{v}_{3} \end{pmatrix}$$

dove la matrice unitaria U è detta *matrice di mixing*.

Piero Galeotti, University of Torino

Di solito questa matrice viene parametrizzata come il prodotto di tre rotazioni, in analogia alla matrice di Cabibbo-Kobayashi-Maskawa nel settore adronico:

	(1	0	0	$\cos\theta_{13}$	0	$e^{-i\delta}\sin\theta_{13}$		$\cos\theta_{12}$	$\sin \theta_{12}$	0	(1	
U =	0	$\cos\theta_{23}$	$\sin\theta_{23}$	0	1	0	•	$-\sin\theta_{12}$	$\cos\theta_{12}$	0	$e^{i\varphi_2}$	
	0	$-\sin\theta_{23}$	$\cos\theta_{23}$	$\langle -e^{i\delta}\sin\theta_{13}$	0	$\cos\theta_{13}$		0	0	1)		$e^{i\varphi_3}$

gli angoli θ_{ij} sono detti angoli di mixing, mentre le fasi δ (fase di Dirac), $\varphi_2 e \varphi_3$ (fasi di Majorana) sono legate alla violazione di CP nel settore leptonico. Le fasi di Majorana non sono osservabili nei fenomeni di oscillazione.

OSCILLAZIONI DI NEUTRINO

nel vuoto:
$$P(v_{\mu} \rightarrow v_{\tau}) \approx \sin^2(2\vartheta) \sin^2\left(1.27 \frac{\Delta m^2 (eV^2) L(km)}{E(GeV)}\right)$$

1. neutrini solari

 $L = 1.5 \ 10^{11} \text{ m}, E \sim 10 \text{ MeV}.$ da cui: $L/E \sim 10^{10} \text{ km/GeV}$.

$$v_e \rightarrow v_x$$

2. neutrini atmosferici (eventi confinati)

 $L = 30 \text{ km} \text{ (dall'alto)}, E \sim 10 \text{ GeV}$ $L = 10^4$ km (dal basso), $E \sim 10$ GeV da cui: L/E varia da ~ 1 a 10^4 km/GeV. 3. neutrini da sorgenti astrofisiche $L = 3.10^{21} \text{ km}$ (100 Mpc), $E > 10^7 \text{ GeV}$ Sorgenti localizzate rispetto al fondo dei neutrini atmosferici

Neutrino energy E = 1 MeV

Neutrino cross-section $\sigma = 10^{-44} \text{ cm}^2$

Probability of one interaction in crossing the Earth diameter $P \sim 10^{-11}$

Piero Galeotti, University of Torino

Piero Galenn, on restry of torme comme nay concer, ruequipa; rora, zoot

The muon depthintensity curve (underground data): curves are calculated by Bugaev et al., 1998

Piero Galeotti, University of Tor<mark>ino</mark>

Flusso di μ in alcuni laboratori in funzione della loro profondità sottoroccia

A massive (1 kton) scintillation detector for neutrino astronomy @ LNGS is running since 1992 (16 Years of data)

The Borexino detector

Struttura del Sole

Caratteristica	Valore
Distanza	$1.5 \cdot 10^{11} \mathrm{m}$
Raggio	7·10 ⁸ m
Massa	2·10 ³⁰ Kg
Densità	$1.4 \cdot 10^{3} \text{kg/m}^{3}$
Luminosità	$3.8 \cdot 10^{26} \text{ W}$
Temperatura effettiva	5800 K
Densità centrale	$1.5 \cdot 10^5 \text{kg/m}^3$
Pressione centrale	6·10 ¹⁴ Pa
Temperatura centrale	$1.3 \cdot 10^7 \text{ K}$
Età	$1.4 \cdot 10^{17} \text{ s}$

Nelle stelle (e quindi anche nel Sole) avvengono spontaneamente le reazioni di fusione termonucleare che bruciano idrogeno trasformandolo in elio, l'unico processo in grado di spiegare la lunga esistenza delle stelle. Due condizioni permettono di stimare le condizioni interne delle stelle:

equilibrio idrostatico (legge di Stevino)

$$\rightarrow dP = -\rho g \, dr$$

equazione di stato dei gas perfetti

 $P = \frac{nRT}{V} = NkT = \frac{k}{\mu m_{H}}\rho T$ Peru, 2008

Piero Galeotti, University of Torino
Dalla prima si ricava la pressione al centro del Sole: Roder -2011

$$\frac{dP(r)}{dr} = -\rho g = -\rho \frac{GM(r)}{r^2} = -\frac{4}{3}\pi G \rho^2 r$$

$$\int_{r}^{\infty} \frac{4}{3} \pi \rho^{2} \text{Grdr} = \frac{2}{3} \pi \rho^{2} \text{G} (R_{0}^{2} - r^{2}) = P(r) - P(R_{0})$$

$$P(r=0) = P_C = \frac{2}{3}\pi \rho^2 G R_O^2 = \frac{3GM_O^2}{8\pi R_O^4} = \frac{\rho G M_O}{2R_O} \approx 6.10^{14} \,\mathrm{Pa}$$

Dalla seconda si ricava la temperatura al centro del Sole:

 $T_c \sim 1, 5 \cdot 10^7 \ K \sim 1 \ keV$

un valore circa 100 volte inferiore all'energia repulsiva elettrostatica tra 2 protoni alla distanza r ~ 10⁻¹⁴ m.

Piero Galeotti

Equilibrio idrodinamico ed energetico

- Sfera di gas autogravitante in simmetria sferica
- Si trascurano effetti centrifughi e magnetici

$$\frac{dP}{dr} = -\frac{GM(r)\rho(r)}{r^2}$$
$$M(r) = 4\pi \int_{0}^{r} \rho(r')r^2 dr$$
$$L(r) = 4\pi \int_{0}^{r} \varepsilon(r')\rho(r')r^2 dr$$
$$\varepsilon(r) = \text{produzione di energia}$$

Piero Galeotti, University of Torino

Tempi evolutivi solari

Il Sole deve avere un'età almeno pari a quella della Terra $(4,5\cdot10^9 \text{ anni})$ e non deve aver avuto variazioni troppo grandi di luminosità. Ciò vuol dire che, nel complesso, deve aver prodotto l'energia.

$$E = L\tau = 4 \cdot 10^{26} \cdot 4.5 \cdot 10^9 \cdot 3.1 \cdot 10^7 \approx 6 \cdot 10^{43} \text{ J}$$

corrispondente a $\varepsilon \sim 3.10^{13}$ J/kg. L'ossidazione del carbonio fornisce solo $\varepsilon \sim 9.10^{6}$ J/kg, mentre la contrazione gravitazionale può aver prodotto, in tutto l'energia:

Le reazioni di fusione di H in He sono invece in grado di produrre ε ~ 6.10¹⁴ J/kg e di garantire l'esistenza del Sole per Pert Fare 10¹⁰ anni of Torino Cosn

$$E_{P} = -\int_{0}^{R} (\frac{4}{3}\pi r^{3}\rho)(4\pi r^{2}\rho dr)\frac{G}{r} =$$
$$= -\frac{1}{3}(4\pi\rho)^{2}G\int_{0}^{R} r^{4}dr = -\frac{3}{5}\frac{GM^{2}}{R} = 2\cdot10^{41}\text{J}$$

 $4p \rightarrow 1\alpha + 2e^+ + 2v_{\rho} + \text{energia}$

Quanta energia viene liberata?

- L'energia liberata è ~ 26 MeV
 = 4 x 10 ⁻¹² Joule
 = 1 x 10 ⁻¹⁵ Calorie
- Il Sole libera questa energia 10³⁸ volte al secondo
 ma ha 10⁵⁶ atomi di H da bruciare

Piero Galeotti, University of Torino

L'energia prodotta nelle $\frac{L}{M_C} \approx \frac{4 \cdot 10^{26}}{4 \cdot 10^{29}} = 10^{-3} \text{ W/kg} \approx 100 \text{ W/m}^3$ parti interne del Sole è:

Il processo di fusione dell'idrogeno nelle stelle avviene con emissione di $\gamma \in v_e$. Per definizione il loro libero cammino medio è:

$$\chi_f \le \frac{1}{N_e \sigma_T} \approx 10^{-3} m \text{ per fotoni}, \quad \chi_v = \frac{1}{n\sigma} \approx 10^{18} m \text{ per neutrini}$$

quindi, mentre i fotoni diffondono lentamente verso la superficie del Sole, da cui vengono emessi dopo un tempo di oltre 10¹² s (10⁵ anni), i neutrini sfuggono immediatamente e sono rivelabili a Terra in esperimenti sotterranei.

Piero Galeotti, University of Torino

Il flusso totale di v_e a terra è:

$$\Phi_T(v_e) = \frac{2 \cdot 10^{38}}{4\pi d^2} \approx 10^{15} v_e \,\mathrm{m}^{-2} \mathrm{s}^{-1}$$

Il rate di eventi attesi per nucleo bersaglio si calcola con la relazione:

$$R = \sum_{i} \int_{E_{th}}^{E_{Max}} \Phi_{i}(E) \sigma(E) dE$$

Per la rivelazione dei neutrini solari si usano nuclei in cui avvengono i processi di cattura: $v_e + A(Z,N) \rightarrow A(Z+1,N-1) + e^{-1}$ ossia, a livello elementare, $v_e + n \rightarrow p + e^{-1}$. Il primo nucleo utilizzato è stato il ³⁷Cl che si trasforma in ³⁷A, in seguito è stato utilizzata la reazione ⁷¹Ga \rightarrow ⁷¹Ge.

Piero Galeotti, University of Torino

Piero Galeotti, University of Torino

University of Torino

La piccola sezione d'urto, in media $\sigma \sim 10^{-46} \text{ m}^2$, richiede l'uso di grandi masse di rivelatore. Poichè il ³⁷Cl è sensibile quasi solo ai neutrini di alta energia prodotti dal decadimento del ⁸B, il cui flusso a Terra è $\Phi(v_e) \sim 6.10^{10} \text{ m}^{-2} \text{s}^{-1}$, il numero di eventi attesi è R = $\Phi(v_e)\sigma \sim 6.10^{-36}$ per nucleo bersaglio. Per avere valori R ~ 1, e` stata introdotta una unità di misura speciale per calcolare o per misurare il numero di catture di neutrini solari nei diversi rivelatori, lo SNU, dove 1 SNU equivale alla cattura di 1 v_e s⁻¹ in un bersaglio composto di 10³⁶ atomi.

Piero Galeotti, University of Torino

$$v_e^{+71}Ga \rightarrow ^{71}Ge_{+e}$$

Piero Galeotti, University of Torino

REAZIONE	37 CI		⁷¹ Ga	
	catture (SNU)		catture (SNU)	
рр	0,0	0,0	70,8	71,1
рер	0,23	0,21	3,01	2,99
⁷ Be	1,12	0,99	34,4	30,9
8 B	6,15	4,06	14,1	10,77
¹³ N	0,10	0,10	3,77	2,36
¹⁵ O	0,34	0,37	6,03	3,66
¹⁷ F	0,003		0,06	
totale	7,9	5,8	132	122,5
misurato	2,6 <u>+</u> 0,16 <u>+</u> 0,14		70 <u>+</u> 8 (Gallex)	
	(Homestake)		72 <u>+</u> 10 (Sage)	
Piero Galeotti, University of Torino	leotti, Cosmic Ray School, Arequipa, ty of Torino Peru, 2008			

Piero Galeotti, University of Torino

Piero Galeotti, University of Torino

Neutrino Flavor Composition of ⁸B Flux

Piero Galeotti, University of Torino

Risultati di SNO

$$N_{cn} = 1344.2_{-69.0}^{+69.8} \qquad \Phi_{cn} = 5.21 \times 10^{6} \text{ cm}^{-2} \text{s}^{-1}$$
$$N_{cc} = 1339.6_{-61.5}^{+63.8} \qquad \Phi_{cc} = 1.59 \times 10^{6} \text{ cm}^{-2} \text{s}^{-1}$$
$$N_{es} = 170.3_{-20.1}^{+23.9} \qquad \Phi_{es} = 2.21 \times 10^{6} \text{ cm}^{-2} \text{s}^{-1}$$

$$\Delta \mathbf{m}^2 = 7.1^{+1.0}_{-0.3} \times 10^{-5} \,\text{eV}^2, \ \vartheta = 32.5^{0}_{-1.6}^{+1.7}$$

Piero Galeotti, University of Torino

KamLAND detector Calibration Device Chimney LS Balloon Liquid Scintillator (diam. 13 m) (1 kton) in A 0 0 Containment Vessel (diam. 18 m)-Photo-Multipliers **Buffer Oil** Outer Detector Outer Detector PMT

Piero Galeotti, University of Torino

Reactor baseline

80 % of expected <u>v</u>_e from baselines 140-210 km

 $\sim 5 \times 10^6 v_e / cm^2 / sec$

Few evts/day detected Piero Galeotti, Cosmic Ray School, Arequipa, University of Torino Peru, 2008

First result in August 2007

Finally, May 15th, 2007

$47 \pm 7_{stat}$ cpd/100tons for 862 keV ⁷Be solar v

Evoluzione di stelle di grande massa

- Evolvono più rapidamente (t ~ M^{-2.5})
- La pressione di radiazione è dominante
- Il nucleo non diventa mai degenere e l'elio si accende in modo non esplosivo
- Formazione di una struttura a shell con sequenza

Il nucleo raggiunge la composizione di ferro e nichel

- temperatura di 10¹⁰ gradi, fotoni di alta energia
- Curva dell'energia di legame dei nucleoni nei nuclei
- Non possono aver luogo ulteriori trasformazioni nucleari esotermiche
- Fotodisintegrazione endotermica del Fe

Piero Galeotti, University of Torino

$$\gamma + {}_{26}^{56}Fe \rightarrow 13 {}_{2}^{4}He + 4n$$
$$\gamma + {}_{2}^{4}He \rightarrow 2p + 2n$$

Piero Galeotti, University of Torino

Supernove di tipo II • Condizioni fisiche della presupernova $T_c \approx 8 \times 10^9 \,\mathrm{K}$ $\rho_c \approx 10^{10} \,\mathrm{g \, cm^{-3}}$

•Collasso gravitazionale del core di stelle massive (1.3 $M_{\odot} \approx 2.5 M_{\odot}$) in seguito alla fotodissiciazione dei nuclei di Ferro

•Neutronizzazione e emissione di neutrini, intrappolati nell'inviluppo •Energia liberata: $\approx 10^{53}$ erg

$$e^+e^- \rightarrow v_x v_x$$

Piero Galeotti, University of Torino

Collasso stellare

Il collasso stellare è inevitabile quando la massa del core M_c supera la massa di Chandrasekhar

$$M_{Ch} = 5.8 \cdot Y_e^2 M_O \approx 1.44 M_O$$

 M_c aumenta per il bruciamento dei gusci intorno al core, M_{Ch} diminuisce perchè diminuisce Y_e in seguito a processi di neutronizzazione, creazione e annichilazione di coppie e fotodissociazione:

$$e^- + p \rightarrow n + v_e, \quad \gamma + \gamma \rightarrow e^+ e^- \rightarrow v_e + v_e,$$

 $\gamma + {}^{56}Fe \rightarrow 13^4He + 4n, \quad \gamma + {}^4He \rightarrow 2p + 2n$

Piero Galeotti, University of Torino

Stella di neutroni neonata

Gravitational binding energy $E_b \approx 3 \times 10^{53} \text{ erg} \approx 17\% M_{SUN} c^2$

emissione 99% Neutrini 1% Energy dell'eplosione (di cui 1% in raggi cosmici) 0.01% luce, più della Galassia stessa

Luminosità in neutrini $L_v \approx 3 \times 10^{53} \text{ erg} / 3 \text{ sec}$ $\approx 3 \times 10^{19} L_{SUN}$ durante l'esplosione, la luminosità è superiore a quella dell'intero universo

= <u>n</u>o

 GM^2

 GM^2

Piero Galeorn, University of Torino

 $\Delta \boldsymbol{E}_{\boldsymbol{B}} = -$

Созпис кау School, Arequipa, Peru, 2008

Neutrini da collassi stellari

In un core stellare con $M_C \sim M_{Ch}$ ci sono ~ 10^{57} elettroni; quindi il numero massimo di neutrini da neutronizzazione emessi è 10^{57} . Poichè la loro energia media è ~ $10 \text{ MeV} = 10^{-12} \text{ J}$, in totale l'energia emessa in questa fase è circa 10^{45} J , ossia ~ $10^{-2} \text{ M}_{C} \cdot \text{c}^{2}$.

L'energia emessa in neutrini durante i processi di annichilazione e⁺e⁻ è ~ 20-30 volte maggiore, ossia ~ $3\cdot10^{46}$ J. Per un collasso al centro della Galassia (d~8.5 kpc) il flusso di v_e e a Terra è:

$$\Phi(v_e, \bar{v}_e) = \frac{\Phi_0(v_e, \bar{v}_e)}{6 \cdot 4\pi d^2} \approx 10^{16} (v_e, \bar{v}_e) \text{ m}^{-2}$$

Piero Galeotti, University of Torino

71

Spettro di Fermi-Dirac

$$\frac{dN}{dE_{v}} = \frac{E_{v}^{2}}{\left(1 + e^{E_{v}/kT}\right)} e^{-\alpha(E_{v}/kT)^{2}}$$

$$=\frac{\int_{0}^{\infty} E\frac{dN}{dE}dE}{\int_{0}^{\infty} \frac{dN}{dE}dE} = \frac{kT\int_{0}^{\infty} x\frac{x^{2}}{1+e^{x}}dx}{\int_{0}^{\infty} \frac{x^{2}}{1+e^{x}}dx} = kT\frac{F_{3}(x)}{F_{2}(x)} = 3,15kT$$

Numero di eventi attesi in un rivelatore

$$N(\tau, E_{th}, d) = q \cdot E_{Tot} \frac{N_p}{4\pi d^2} \int_0^{\tau} dt \int_{E_{th}}^{\infty} \frac{d\sigma}{E_v dE_v} dE_v$$

Piero Galeotti, University of Torino

The possibility to observe the neutrino burst depends on background conditions

<u>Cosmic rays</u> $0 < E < \infty$

Sources of background

- a) muons
- b) secondary particles generated by muons
 - (e, γ , n and long-life isotopes)
- c) the products of nuclear reactions and electromagnetic interactions

Natural radioactivity E < 30 MeV, mainly E < 2.65 MeV

Deep underground location Low radioactivity materials Anti-coincidence system Coincidence of signals in several detectors

Piero Galeotti, University of Torino

Fase del collasso	1	2	3
Energia totale in neutrini (10 ⁵³ erg)	0,1	1,7	3
Energia media dei neutrini (MeV)	12	14	15
Durata temporale (s)	0,04	3,1	15

1. Formazione del core opaco ai neutrini (neutrinosfera).

2. Accrescimento dell'inviluppo sul core.

3. Raffreddamento Kelvin della neonata stella di neutroni calda.

Piero Galeotti, University of Torino

kT (MeV)	E _{th} (MeV)	0,01	0,1	t (s) 1	10	<u>></u> 25
	5	0,15	2,55	9,3	24,4	35,3
3	10	0,08	1,33	4,8	12,7	18,3
	15	0,02	0,39	1,4	3,7	5,4
	20	0,00	0,07	0,3	0,7	1,0
	5	0,23	4,0	14,5	38	55
4	10	0,17	3,0	10,9	29	41
	15	0,09	1,6	5,7	15	22
	20	0,04	0,6	2,2	5,9	8,5
	5	0,31	5,3	19	51	73
5	10	0,27	4,6	16,7	44	64
	15	0,19	3,2	11,7	31	45
	20	0,11	1,8	6,6	17	25

 $\overline{v}_e + {}^{12}C \rightarrow {}^{12}B + e^+$ $v_e + {}^{12}C \rightarrow {}^{12}N + e^-$

Piero Galeotti, University of Torino $\sigma(v_e + n) = \sigma(v_e + p) = 9 \cdot 10^{-44} \left(\frac{E_v}{\text{MeV}}\right)$ Cosmic Ray School, Arequipa, Peru, 2008

77

cm²

The LVD detector

The scintillator of ach counter (1.2 tons) is watched from the top by 3 PMTs (15 cm diameter).

Piero Galeotti, University of Torino Cosmic Ray School, A Peru, 2008

840 scintillator counters, 1.5 m³ each, are inserted in modules holding 8 counters each.

The modules are grouped and stacked together to form three towers of 35 modules each.

INTERNAL Counters (M=570 tons) EXTERNAL Counters (M=430 tons)

TOP VIEW

Piero Galeotti, University of Torino Cosmic Ray School, ArequiFeRONT VIEW Peru, 2008

 Quasi-thermal (Fermi -Dirac) neutrino energy spectra from inner layers of collapsing star (neutrinospheres).

 Uncertainties on values of temperatures.

Typically

 $|T_{v_e}| \leq |T_{v_e}| < |T_{v_x}|$

Typical energy scale ~ 0-50 MeV

•

Piero Galeotti, University of Torino

v Burst Detection in LVD

v_e tagging through detection of delayed γ from n capture at low energy threshold, efficiency 60%.

 \overline{v}_{e} + p \rightarrow n + e⁺

$$v_i(v_x) + e^- \rightarrow v_i(v_x) + e^-$$

 $\frac{v_{e} + {}^{12}C \rightarrow {}^{12}N + e^{-}}{v_{e} + {}^{12}C \rightarrow {}^{12}B + e^{+}}$

$$\nu_i(\nu_x) + {}^{12}C \rightarrow \nu_i(\nu_x) + \gamma + {}^{12}C$$

NC and CC interactions on carbon nuclei: potentially useful for v oscillation ^{quipa}studies.

High duty cycle (>99.5% since 2002)

82

Fiducial Active Mass (M~ 900 tons since Jun/2001) University of Torino Peru, 2008

How can the neutrino burst be identified ?

Detection of a burst of N pulses in a short time interval T

$$N \sim \frac{1}{4\pi R^2} \cdot \sum_{i} \int_{E_{thr}}^{\infty} I_{v_i}(E_{v_i}) \cdot \sigma(E_{v_i}) dE \cdot M$$

Piero Galeotti, University of Torino

85

University of Torino

Peru, 2008

Normalized to same number of events! In a 10 s burst, 10 events expected from background.

Galaxy	survey	
Curury		

RUN	Since:	То:	Uptime [days]	Duty Cycle	Mass [tonn]	PUBLISHED
RUN 1	Jun 6 th '92	May 31 st '93	285	60%	310	23 rd ICRC 1993
RUN 2	Aug 4 th '93	Mar 11 th '95	397	74%	390	24 th ICRC 1995
RUN 3	Mar 11 th '95	Apr 30 th '97	627	90%	400	25 th ICRC 1997
RUN 4	Apr 30 th '97	Mar 15 th '99	685	94%	415	26 th ICRC 1999
RUN 5	Mar 16 th '99	Dec 11 th '00	592	95%	580	27 th ICRC 2001
RUN 6	Dec 12 th '00	Mar 24 th '03	821	98%	842	28 th ICRC 2003
RUN 7	Mar 25 th '03	Feb 4 th '05	666	>99%	881	29 th ICRC 2005
RUN 8	Feb 5 th '05	May 31 st '07	846	>99%	936	30 th ICRC 2007

LVD

rate of Galactic Gravitational Stellar Collapses ==> $[D \le 20 kpc] < 0.18 event/year 90\% c.l.$

SUPER KAMIOKANDE

Piero Galeotti, rate of Galactic Gravitational Stellar Collapses Perg 20.32 event/year 90% c.l. Universit AMONPC

Ian Shelton (U.To) 10" astrograph

On line print of five pulses on 23 febbrury 1987 at 3 hr, 52 min i.t., detected at Mt. Blanc LSD experiment

23 59 52.80/7 22 02 1987/CN 051 A 158/ SCR-0000240 REL 0128
*** INEGE CLOCK DATE/TIME IS : 23 00:00:00:29 (591 MSEC *** SOLAR TI
CLUCK STOP
LSDNON 23-FEB-87 00:12:59 *** HIST.UPDATE AT EVENT (761) RUN 1928
LSDM02 23-FEB-87 01:28:10 *** UPDATE HIST. FILE 2 ***
LSDMON 23-FEB-87 01:33:52 *** HIST.UPDATE AT EVENT 861 RUN 1328
LSDMON 23-FEB-87 02:12:48 *** EMPTY/ERRORED EVENT 900 RUN 1328
LSDMON 23-FEB-87 03:17:08 *** HIST.UPDATE AT EVENT 962 RUN 1328
LSDMD2 23-FEB-87 03:37:47 *** UPDATE HIST. FILE 2 ***
LSDM02 23-FEB-87 03:52:47 BURST OF 4 EVENTS
3:52:42.696 23- 2-87 TIME = 5.904 SEC. EV.ATTESI = 0.07 FREQ.IMIT = 0.523E-01 /DAY EV 994 TANK 31 ADC 33 L.E.P. 0 EV 995 TANK 14 ADC 37 L.E.P. 0 EV 996 TANK 25 ADC 46 L.E.P. 1 EV 997 TANK 35 ADC 32 L.E.P. 0 LSDM02 23-FEB-87 03:52:56 IIIIIIII BURST OF 4 EVENTS IIIIIII
3:52:43.800 23- 2-87 TIME = 3.151 SEC. EV.ATTESI = 0.04 FREQ.IMIT = 0.811E-02 /DAY EV 995 TANK 14 ADC 37 L.E.P. 0 EV 996 TANK 25 ADC 46 L.E.P. 1 EV 997 TANK 35 ADC 32 L.E.P. 0 EV 998 TANK 33 ADC 40 L.E.P. 0 LSDM02 23-FEB-87 03:53:04
3:52:43.800 23- 2-87 TIME = 7.008 SEC. EV.ATTESI = 0.08 FREQ.IMIT = 0.178E-02 /DAY EV 994 TANK 31 ADC 33 L.E.P. 0 EV 995 TANK 14 ADC 37 L.E.P. 0 EV 996 TANK 25 ADC 46 L.E.P. 1 EV 997 TANK 35 ADC 32 L.E.P. 0 EV 998 TANK 33 ADC 40 L.E.P. 0 CLOSTR LSDMON 23-FEB-87 04:53:22 *** HIST.UPDATE AT EVENT 1062 RUN 1328 LSDM02 23-FEB-87 05:28:53 *** UPDATE HIST. FILE 2 ***

Pi

O. SAAVEDRA

Neutrino '84, 11th Int. Conf.on Nutrino Physics and Astrophysics

Finally, if the collapse occurs within our Galaxy, a large ammount of information on the dynamics of the collapse and on the physical conditions inside the pre-supernova core can be obtained by observing not only the $\overline{\boldsymbol{v}}_e$ through reaction (1), but also the \boldsymbol{v} through the elastic scattering reaction $\boldsymbol{v}_e + e \rightarrow \boldsymbol{v}_e + e$, which however produces a lower number of interactions in the detector. The signature of the electron neutrinos is given in LSD by pulses above the high energy threshold of 7 MeV, without any low energy delayed pulse. In this way, since \boldsymbol{v} are emitted as early as the neutronization stage of the collapse, the initial phases of the development of a collapsing star can be study.

4. Solar neutrinos

Since in our apparatus the local radioactivity background from the surrounding rock has been reduced to very low counting rates, we are checking the possibility to detect high energy solar neutrinos from the 10 B decay in the Sun, through the elastic scattering reaction with the electrons of our detector.

By using the present limit flux of solar neutrinos observed in the Brookhaven detector, and taking into account that the energy threshold in our apparatus can be set at 5 MeV, the number of detectable electrons from solar neutrinos is $\sim 0.3/\text{day}$.

5. Atmospheric neutrinos

At low energy range, $10 \le F_{\psi} \le 700$ MeV, no experimental information is at present available for the atmospheric neutrino spectrum; also the theoretical predictions are not well defined in this region, even if so me calculations have been recently made for energies ≥ 200 MeV to stima te the neutrino background in proton decay experiments in underground laboratories. However, new efforts are in progress, Gaisser⁷, to predict the neutrino spectrum at low energies.

With our LSD experiment we intend to directly measure the $\tilde{\nu}$ atmospheric neutrinos above an energy threshold of ≥ 10 MeV through reaction (1). By measuring inside the fiducial volume of LSD both the energy of the contained e⁺ and the associate γ -pulse from neutron capture, we'll obtain a direct experimental measure of the $\tilde{\nu}_{\alpha}$ atmospheric spectrum, with a very clear signature that makes such events easily distinguishable from any other type of neutrino interactions. At a threshold of 10 MeV, the total number of atmospheric neutrino interactions has been exitmated to be of the order of a few tens per year.

91

Hirata et al. PR D 448 (1988)

Piero Galeotti, University of Torino Cosmic Ray School, Arequipa, Peru, 2008

92

relative Kamiokande time

	hour	min	sec	nhit	number	duration	prob
						[s]	[years]
	7	35	33.67	58	11	12.4	1.21 107
	7	35	33.78	36			
	7	35	33.98	25			
IN/D	7	35	34.00	26			
	7	35	34.18	39			
	7	35	35.21	83			
	7	35	35.40	55			
	7	35	35.59	51			
	7	35	42.89	21			
	7	35	44.11	37			
	7	35	46.11	24			

DETECTED NEUTRINO SIGNALS

Mont Blanc	5 pulses	$E \ge 5 \text{ MeV}$	UT 2:52:36.8 <u>+</u> 2 ms
Kamioka	11 "	8	7:35:35 <u>+</u> 1 min
IMB	8 "	25	7:35:41 <u>+</u> 5 ms
BST	(2+5) "	10 2	2:52:34 and 7:36:06 (+ 2s-54s)

The main signal comes from electron antineutrinos: $\overline{v}_e p \rightarrow ne^+$ followed by e^+e^- annihilation producing 2 γ 's, detectable in scintillator but not in water. The Mont Blanc signal ($5.8 \le E_{vis} \le 7.8$ MeV) corresponds to $4.6 \le E_{vis} \le 6.6$ MeV in water, at the limit to be detected in Kamioka.

Piero Galeotti, University of Torino

Piero Galeotti, University of Torino

Kamiokande has a time error ± 1 minute

Piero Galeo Fig. 5. The energy a Gosmin Ray School, LA Regulfa mioka events University of Torino Peru, 2008

Coincidences Mt. Blanc-Kamioka

Mt. Blanc event time 1:45 - 3.45 U.T.

Piero Galeotti, University of Torino

Coincidence window $\Delta t = \pm 0.5 s$ Bin width: 2 hours Coincidence time: 34 hours Kamioka time + 7 seconds Cosmic Ray School, Arequipa, Peru, 2008

Analysis of the Data Recorded by the Mont Blanc Neutrino Detector and by the Maryland and Rome Gravitational-Wave Detectors during SN1987A.

M. AGLIETTA, G. BADINO, G. BOLOGNA, C. CASTAGNOLI, A. CASTELLINA W. FULGIONE, P. GALEOTTI, O. SAAVEDRA, G. TRINCHERO and S. VERNETTO

Istituto di Cosmogeofisica del CNR - Torino Istituto di Fisica Generale dell'Università - Torino

E. AMALDI, C. COSMELLI, S. FRASCA, G. V. PALLOTTINO G. PIZZELLA, P. RAPAGNANI and F. RICCI

Dipartimento di Fisica dell'Università «La Sapienza» - Roma Istituto Nazionale di Fisica Nucleare - Roma

M. BASSAN, E. COCCIA and I. MODENA Dipartimento di Fisica dell'Università «Tor Vergata» - Roma Istituto Nazionale di Fisica Nucleare - Roma

P. BONIFAZI and M. G. CASTELLANO

Istituto di Fisica dello Spazio Interplanetario del CNR - Frascati (Roma) Istituto Nazionale di Fisica Nucleare - Roma

V. L. DADYKIN, A. S. MALGUIN, V. G. RYASSNY, O. G. RYAZHSKAYA V. F. YAKUSHEV and G. T. ZATSEPIN Institute of Nuclear Research, Academy of Sciences of USSR - Moscow, USSR

D. GRETZ, J. WEBER and G. WILMOT Department of Physics and Astronomy, University of Maryland, USA

Piero Galeot[•] University of (ricevuto il 6 Settembre 198 Gosmic Ray School, Arequipa, Peru, 2008

Neutrino interactions in iron

$$E_{e} = E_{o} - \Delta E$$

$$F_{e} = E_{o} - \Delta E$$

	hour	min	sec	nhit	number	duration	prob	
	7	35	33.67	58	11	12.4	1.21 10 ⁷	
	7	35	33.78	36				
	7	35	33.98	25				
TAAD	7	35	34.00	26				
TWR	7	35	34.18	39				
E>15 MeV	7	35	35.21	83				
	7	35	35.40	55				
	7	35	35.59	51				
	7	35	42.89	21				
	7	35	44.11	37				
	7	35	46.11	24				
	7	5.4	22.26	99	7	6.9	660	-
		54	22.20	20	· ·	0.2	009	
	7	54	24.11	23				
NO TWR	2	54	25.24	20				
F<15 MeV	7	54	20.04	22				
	7	54	27.10	22				
	7	54	28.46	22				

Piero Galeotti, University of Torino

February 23, 1987

Piero Galeotti, University of Torino

A rotating collapsar

The Two-Stage Gravitational Collapse Model

[Imshennik V.S., Space Sci Rev, 74, 325-334 (1995)]

